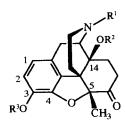
143. Synthesis and Biological Evaluation of 14-Alkoxymorphinans

Part 101)

14-O-Methyl Derivatives of 5-Methylnaltrexone and 5-Methylnaloxone

by Helmut Schmidhammer²)* and Christine Nussbaumer

Institute of Pharmaceutical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck


and Dinesh Patel and John R. Traynor

Department of Chemistry, Loughborough University of Technology, Loughborough, Leicestershire, LE11 3TU, U.K.

(11. V. 94)

In several steps, 5,14-O-dimethylnaltrexone (3) and 5,14-O-dimethylnaloxone (4) were prepared starting from 5,14-O-dimethyloxycodone (5). Compound 3 exhibited opioid agonism *in vitro* (guinea-pig ileum and mouse *vas deferens* preparations) and antagonism *in vivo* (AcOH-writhing test in mice), while compound 4 was found to be an agonist *in vitro* and *in vivo*.

Introduction. – The 14-O-ethylation of 5-methylnaltrexone [2] (1) afforded compound 2, which was found to be an opioid antagonist with unexpected *in vivo* activity. It does not antagonize morphine-induced antinociception in the AcOH-writhing test in mice, but it does block fentanyl- and sufentanil-induced antinociception in the same test. Such selectivity was not previously reported. Therefore, it was of interest to compare the pharmacology of 14-O-ethyl-5-methylnaltrexone (2) with the 14-OMe analogue 3. Thus, we prepared 5,14-O-dimethylnaltrexone (3) and its N-allyl analogue 4.

- 1 R^1 = cyclopropylmethyl, $R^2 = R^3 = H$
- 2 R^1 = cyclopropylmethyl, R^2 = Et, R^3 = H
- 3 R^1 = cyclopropylmethyl, R^2 = Me, R^3 = H
- 4 $R^1 = \text{allyl}, R^2 = Me, R^3 = H$
- 5 $R^1 = R^2 = R^3 = Me$
- 6 $R^1 = CO_2CHC1CH_3$, $R^2 = R^3 = Me$
- 7 $R^1 = H$, $R^2 = R^3 = Me$
- 8 R^1 = cyclopropylmethyl, R^2 = R^3 = Me
- 9 $R^1 = \text{allyl}, R^2 = R^3 = Me$

Chemistry. – Starting material for the synthesis of compounds 3 and 4 was 5,14-O-dimethyloxycodone (= 4.5α -epoxy- 3.14β -dimethoxy- 5β .17-dimethylmorphinan-6-one; 5) which is available from thebaine via 5-methylthebaine [3] [4] in four steps [5] [6].

¹⁾ Part 9: [1].

Present address: Astra Pain Research Unit, 275 bis, boulevard Armand Frappier, Edifice 3000, Laval, Quebec, Canada H7V 4A7.

N-Demethylation was carried out with 1-chloroethyl chloroformate [7] to give carbamate $\bf 6$ as intermediate which was not further purified. Refluxing $\bf 6$ in MeOH afforded N-demethylmorphinan 7. Alkylation of 7 with either cyclopropylmethyl chloride or allyl bromide in DMF in the presence of $\bf K_2CO_3$ yielded $\bf 8$ and $\bf 9$, respectively. Ether cleavage with 48% HBr solution afforded 5,14-O-dimethylnaltrexone (3) and 4,14-O-dimethylnaloxone (4).

Pharmacological Evaluation. – Compounds 3 and 4 were evaluated *in vitro* by ligand binding (*Table 1*) in homogenates of guinea-pig brain using the selective ligands [3 H]DAMGO (μ), [3 H]DPDPE (δ), and [3 H]U69593 (κ), and by isolated-tissue bioassay using the guinea-pig myenteric plexus longitudinal muscle (GPI) and the mouse *vas deferens* preparations (MVD; *Table 2*). Naloxone, an antagonist with some preference for μ receptors, was used to define the receptor selectivity of the compounds.

	[³H]DAMGO (μ)	[³H]U69593 (κ)	[³H]DPDPE (δ)
	<i>K</i> , [пм]	K_{i} [nM]	<i>K</i> _i [пм]
3	2.06	1.99	12.4
4	3.81	16.6	9.58
2	1.2	1.1	4.1
Naloxone ^a)	1.8	17.2	27.0

Table 1. Opioid Receptor Binding Studies

3 4 2

1,000	GPI		MVD	
	IC ₅₀ [пм]	naloxone K_e^a) [nm]	IC ₅₀	naloxone Ke ^a) [nм]
	35.2	0.47	21.5	1.83
	2390	26.5	1490	32.4
	> 10000		> 10000	

Table 2. Tissue Preparations (GPI and MVD)

Compounds 3 and 4 exhibited high (nM) affinity for the three opioid receptors μ , κ , and δ . Compound 3 showed approximately the same potency in displacing [${}^{3}H$]DAMGO and [${}^{3}H$]U69593 from their respective (μ and κ) binding sites, while it was somewhat less potent in displacing [${}^{3}H$]DPDPE from δ -sites. Compound 4 exhibited a similar affinity for μ and δ binding sites, with reduced affinity for κ -sites.

In both, GPI and MVD preparations, compound 3 showed marked agonist activity. In contrast, 4 was ca. 70 times less potent as an agonist, and 2 showed no agonist properties when tested up to 10 μ M. Antagonism of 3 by naloxone suggested the compound was acting as a μ -receptor agonist, while the higher K_e value determined against 4 suggested that the weak agonist activity of this compound was mediated by κ -receptors in the GPI and κ - and/or δ -receptors in the MVD.

a) Values taken from [8].

a) $K_e = [\text{antagonist}]/\text{DR-1}$, where DR is the dose ratio (i.e. ratio of equiactive concentrations of the test agonist in the presence of the antagonist).

For *in vivo* evaluation, the AcOH-writhing test was performed in mice³). Compound 3 showed no agonist activity but was able to antagonize the antinociceptive action of the μ -agonist morphine and the κ -agonist U50488H. In contrast, compound 4 exhibited agonism in this test (*Table 3*).

	Agonism	Antagonism		
		morphine (μ ; 1.25 mg/kg; s.c.) $AD_{50}^{a})^{b}$)	U-50488H (κ ; 2.5 mg/kg; s.c.) $AD_{50}^{a})^{b}$)	
3	n.e. ^c)	0.56	2.3	
4	i.w. ^d)	n.e. ^e)	n.e. ^f)	
Naloxone	_	0.08	1.12	
2	n.e. ^c)	n.e. ^g)	n.e.g)	

Table 3. AcOH-Writhing Test in Mice

- a) The AD₅₀ value (95% confidence limit) is defined as the dose at which the antinociceptive effect of the agonist was antagonized in 50% of the animals.
- b) AD_{50} values in mg/kg (s.c.)
- c) No observable effect up to 5 mg/kg.
- d) 39% inhibition of writhing was detected at 5 mg/kg.
- e) No observable effect up to 1.25 mg/kg.
- No observable effect up to 2.5 mg/kg.
- No observable effect; no shift in the dose-effect curve of the agonist could be obtained.

Replacement of the 14-OEt group of 2 by a 14-OMe group to afford compound 3, therefore, markedly changes the pharmacology. Thus, like 2, 3 was an antagonist *in vivo*, but unlike 2 it did block morphine-induced antinociception. The fact that 3 also attenuated U50488H-induced antinociception agrees with the lack of selectivity of this group of compounds as shown by the binding assays. The *in vivo* findings are in contrast to the *in vitro* results which showed 3 and 4 to have agonist properties in both the GPI and the MVD. This is somewhat surprising since previous studies suggested the mouse writhing test to be the most sensitive test for μ - and κ -opioid agonists [9]. In conclusion, 14-OMe analogues 3 and 4 do not retain the unique pharmacological properties of 2.

Experimental Part

General. M.p.: Kofler melting-point microscope; uncorrected. Optical rotations: c in g/100 ml; Perkin-Elmer-141 polarimeter. IR Spectra: in cm⁻¹; Beckman-Accu-Lab-2 apparatus. ¹H-NMR Spectra: Jeol-JNM-PMX-60 spectrometer; δ in ppm rel. to SiMe₄ as internal reference, J in Hz. Elemental analyses were performed at the Analytical Department of F. Hoffmann-La Roche AG, Basel.

(-)-3,14 β -Dimethoxy-4,5 α -epoxy-5 β -methylmorphinan-6-one Hydrochloride (7·HCl). A mixture of 5 (7.0 g, 20.38 mmol), KHCO₃ (10.2 g, 101.9 mmol), 1-chloroethyl chloroformate (13.4 ml, 122.3 mmol), and CH₂Cl₂ (100 ml) was stirred under reflux for 5 h. The inorg. material was filtered off and the filtrate evaporated to yield 9.81 g of 6 as a slightly yellow oil (pure by TLC) which was not further purified and characterized. After refluxing a soln. of this oil in MeOH (50 ml) for 30 min, the soln. was evaporated. The resulting colorless foam (8.42 g) was crystallized from MeOH/Et₂O: 7.82 g (91%) of 7·HCl. A small portion of this material was recrystallized from

³⁾ This test was carried out for us at the Lilly Research Laboratories, Eli Lilly & Co., Lilly Corporate Center, Indianapolis, Indiana 46285, USA, through the courtesy of Dr. J. D. Leander.

MeOH/Et₂O for analysis. M.p. 199–204° (dec.). [α] $_{10}^{20}$ = −130.1 (c = 1.23, CHCl₃). IR (KBr): 3400 (NH $_{2}^{+}$), 1720 (CO). $_{1}^{1}$ H-NMR ((D $_{6}$)DMSO): 9.98, 8.40 (2 br. s, NH $_{2}^{+}$); 6.64 (dd, J = 8, 8, 2 arom. H); 3.73 (s, MeO−C(3)); 3.32 (s, MeO−C(14)); 1.48 (s, Me−C(5)). Anal. calc. for C $_{19}$ H $_{23}$ NO $_{4}$ ·HCl·0.5 H $_{2}$ O·0.5 MeOH (390.88): C 59.91, H 6.96, Cl 9.07, N 3.58; found: C 59.52, H 7.02, Cl 9.29, N 3.50.

- (-)-17-(Cyclopropylmethyl)-4,5α-epoxy-3,14β-dimethoxy-5β-methylmorphinan-6-one (8). A mixture of 7·HCl (2.0 g, 5.12 mmol), K_2CO_3 (3.1 g, 22.43 mmol), cyclopropylmethyl chloride (0.6 ml, 6.14 mmol), and anh. DMF (20 ml) was stirred for 22 h at 100° (bath temp.). The inorg. material was filtered off, the filtrate evaporated, the oily residue partitioned between CH_2Cl_2 and H_2O , and the org. layer washed with brine, dried, and evaporated: 2.0 g of brown oil. This oil was chromatographed (basic alumina, grade II, CH_2Cl_2): 1.81 g (86%) of 8 as a colorless oil. A small portion was converted into 8·HBr for analysis. M.p. 258–261° (dec.; acetone). [α] $_0^{20} = -149.5$ (c = 0.93, $CHCl_3$). IR (KBr): 3600, 3400 (NH⁺, OH), 1720 (CO). $_1^{1}$ H-NMR (CDCl₃): 9.32 (br. s, NH⁺); 6.66 (s, 2 arom. H); 3.94 (s, MeO-C(3)); 3.56 (s, MeO-C(14)); 1.63 (s, Me-C(5)). Anal. calc. for $C_{23}H_{29}NO_4$ ·HBr·0.5 H_2O (473.41): $C_{23}H_{29}NO_4$ ·HBr·0.5
- (-)-17-(Cyclopropylmethyl)-4,5α-epoxy-3-hydroxy-14β-methoxy-5β-methylmorphinan-6-one (3). A soln. of **8** (950 mg, 2.42 mmol) in 48% HBr soln. (10 ml) was refluxed for 15 min. After addition of ice, the soln. was alkalinized with conc. NH₄OH soln. and extracted with CHCl₃/MeOH 3:2 (3 × 20 ml), the combined org. layer dried and evaporated and the resulting slightly pink foam (802 mg) crystallized from MeOH: 505 mg (62%) of **3**. An anal. sample was prepared by recrystallization of a small portion from MeOH. M.p. 177–179°. [α] $_0^2$ = -153.0 (c = 0.93, CHCl₃). IR (KBr): 3500 (OH), 1720 (CO). ¹H-NMR ((D₆)DMSO): 8.73 (br. s, OH); 6.30 (s, 2 arom. H); 3.56 (s, MeO); 1.43 (s, Me—C(5)). Anal. calc. for C₂₂H₂₇NO₄·0.9 MeOH (398.30): C 69.06, H 7.74, N 3.52; found: C 69.24, H 7.97, N 3.47.
- (-)-17-Allyl-4,5α-epoxy-3,14β-dimethoxy-5β-methylmorphinan-6-one (9). A mixture of 7·HCl (2.25 g, 5.76 mmol), allyl bromide (0.56 ml, 6.33 mmol), K_2CO_3 (2.0 g, 14.5 mmol) and anh. DMF (10 ml) was stirred at 80° (bath temp.) for 30 min. After filtration, the filtrate was evaporated, the oily residue partitioned between CH₂Cl₂ and H₂O, the org. layer washed with brine, dried, and evaporated, and the resulting residue (2.1 g yellowish oil) crystallized with EtOH: 1.36 g of 9 as colorless crystals. From the mother liquor another 240 mg of 9 with similar quality were obtained. Total yield 1.6 g (75%). M.p. 90–92°. [α] $_0^{20}$ = -201.1 (c = 0.92, CHCl₃). IR (KBr): 1720 (CO). $_0^{1}$ H-NMR (CDCl₃): 6.69 ($_0^{1}$ d, $_0^{1}$ d,
- (-)-17-Allyl-4,5 α -epoxy-3-hydroxy-14 β -methoxy-5 β -methylmorphinan-6-one (4). A soln. of 9 (1.2 g, 3.25 mmol) in 48% HBr soln. (7 ml) was refluxed for 15 min. After addition of ice, the soln. was alkalinized with conc. NH₄OH soln., extracted with CHCl₃/MeOH: 3:2 (3 × 20 ml), the combined org. layer dried and evaporated, and the resulting residue (1.13 g of slightly brown foam) crystallized from MeOH: 1.03 g (90%) of 4. An anal. sample was obtained by recrystallization of a small amount. M.p. 163–166°. [α] $_{0}^{20}$ = -174.0 (c = 0.85, CHCl₃). IR (KBr): 3400, 3220 (OH), 1720 (CO). $_{1}^{1}$ H-NMR ((D₆)DMSO): 8.90 (br. s, OH); 6.40 (s, 2 arom. H); 5.71 (m, 1 olef. H); 5.16 (m, 2 olef. H); 3.17 (s, MeO); 1.41 (s, Me—C(5)). Anal. calc. for C₂₁H₂₅NO₄·1.5 MeOH·0.5 H₂O (412.50): C 65.51, H 7.82, N 3.40; found: C 65.67, H 7.77, N 3.39.

Pharmacology. Opioid receptor binding was performed in homogenates of guinea-pig brain in *Tris*·HCl buffer (50 mm, pH 7.4) for 40 min at 25°, as previously described [10]. For GPI and MVD, see [10] [11]. For the AcOH-writhing test, see [6] [12] [13].

We are greatly indebted to Dr. J. D. Leander, Eli Lilly & Co. for having provided us with the pharmacological data of the AcOH-writhing test. We wish to thank the Analytical Department of F. Hoffmann-La Roche AG, Basel, for elemental analyses.

REFERENCES

- [1] H. Schmidhammer, A. Schratz, C. Schmidt, D. Patel, J. R. Traynor, Helv. Chim. Acta 1993, 76, 476.
- [2] H. Schmidhammer, K. Mayer-Valkanover, M. Walla-Kugler, Helv. Chim. Acta 1990, 73, 1986.
- [3] R. M. Boden, M. Gates, S. Ho Peng, P. Sundararaman, J. Org. Chem. 1982, 47, 1347.
- [4] H. Schmidhammer, F. Fritsch, W. P. Burkard, L. Eggstein-Aeppli, M. I. Holck, Helv. Chim. Acta 1988, 71, 642.
- [5] H. Schmidhammer, A. Schratz, J. Mitterdorfer, Helv. Chim. Acta 1990, 73, 1784.
- [6] H. Schmidhammer, J. B. Deeter, N. D. Jones, J. D. Leander, D. D. Schoepp, J. K. Swartzendruber, Helv. Chim. Acta 1988, 71, 1801.
- [7] R.A. Olofson, J.T. Marts, J.-P. Senet, M. Piteau, T. Malfroot, J. Org. Chem. 1984, 49, 2081.
- [8] I. Magnan, S. I. Paterson, A. Tavani, H. W. Kosterlitz, N. S. Arch. Pharmacol. 1982, 319, 197.
- [9] A. G. Hayes, M. J. Sheehan, M. B. Tyers, Br. J. Pharmacol. 1987, 91, 823a.
- [10] F. D. Rodriguez, E. Bardall, J. R. Traynor, J. Neurochem. 1992, 59, 467.
- [11] T.G. Franklin, J.R. Traynor, Mol. Neuropharmacol. 1992, 1, 187.
- [12] D. M. Zimmerman, J. D. Leander, J. K. Reel, M. D. Hynes, J. Pharmacol. Exp. Ther. 1987, 241, 374.
- [13] J. D. Leander, P. D. Gesellchen, L. G. Mendelsohn, Pharmacol. Biochem. Behav. 1988, 29, 351.